Boundary-dependent mechanical properties of graphene annular under in-plane circular shearing via atomistic simulations
نویسندگان
چکیده
Graphene annulus possesses special wrinkling phenomenon with wide range of potential applications. Using molecular dynamics simulation, this study concerns the effect of boundary on the mechanical properties of circular and elliptical graphene annuli under circular shearing at inner edge. Both the wrinkle characteristic and torque capacity of annular graphene can be effectively tuned by outer boundary radius and aspect ratio. For circular annulus with fixed inner radius, the critical angle of rotation can be increased by several times without sacrificing its torque capacity by increasing outer boundary radius. The wrinkle characteristic of graphene annulus with elliptical outer boundary differs markedly with that of circular annulus. Torque capacity anomalously decreases with the increase of aspect ratio, and a coupled effect of the boundary aspect ratio and the ratio of minor axis to inner radius on wrinkling are revealed. By studying the stress distribution and wrinkle characteristics, we find the decay of torque capacity is the result of circular stress concentration around the minor axis, while the nonuniform stress distribution is anomalously caused by the change of wrinkle profiles near the major axis. The specific mechanism of out-of-plane deformation on in-plane strength provides a straightforward means to develop novel graphene-based devices.
منابع مشابه
Temperature Effect on Vibration Analysis of Annular Graphene Sheet Embedded on Visco-Pasternak Foundati
In this study, the vibration behavior of circular and annular graphene sheet embedded in a Visco-Pasternak foundation and coupled with temperature change and under in-plane pre-load is studied. The single-layered annular graphene sheet is coupled by an enclosing viscoelastic medium which is simulated as a Visco- Pasternak foundation. By using the nonlocal elasticity theory and classical plate t...
متن کاملThermo-Mechanical Vibration Analysis of FG Circular and Annular Nanoplate Based on the Visco-Pasternak Foundation
In this study, the vibration behavior of functional graded (FG) circular and annular nanoplate embedded in a Visco-Pasternak foundation and coupled with temperature change is studied. The effect of in-plane pre-load and temperature change are investigated on the vibration frequencies of FG circular and annular nanoplate. To obtain the vibration frequencies of the FG circular and annular nanopla...
متن کاملSurface hydrogenation regulated wrinkling and torque capability of hydrogenated graphene annulus under circular shearing
Wrinkles as intrinsic topological feature have been expected to affect the electrical and mechanical properties of atomically thin graphene. Molecular dynamics simulations are adopted to investigate the wrinkling characteristics in hydrogenated graphene annulus under circular shearing at the inner edge. The amplitude of wrinkles induced by in-plane rotation around the inner edge is sensitive to...
متن کاملWrinkling Behaviour of Annular Graphynes under Circular Shearing Load Using Molecular Dynamics Simulations
Graphyne, a novel carbon allotrope, is a two-dimensional lattice of sp2+sp1 hybridization-type carbon atoms, similar to graphene. The initiation and development of wrinkles in single-layer graphynes (α-, β-, γ-, and 6, 6, 12-graphyne) subjected to in-plane circular shearing are investigated. In comparison with graphene, wrinkle pattern and profile characterization in relation to wave number, wa...
متن کاملBending Analysis of Multi-Layered Graphene Sheets Under Combined Non-Uniform Shear and Normal Tractions
Bending analysis of multilayer graphene sheets (MLGSs) subjected to non-uniform shear and normal tractions is presented. The constitutive relations are considered to be non-classical based on nonlocal theory of elasticity. Based on the differential transformation method, numerical illustrations are carried out for circular and annular geometries. The effects of nano scale parameter, radius of c...
متن کامل